The Geochemical Contraints in the Origin of the Saiya-Shokobo Younger Granite Complex, Central Nigeria

Aga, T.¹ and Haruna, A. I.²

¹Department of Geology, University of Jos, Jos, Nigeria ²Department of Applied Geology, Abubakar Tafawa Balewa University, Bauchi, Nigeria Corresponding Author: Aga, T.

Abstract: The Saiya-Shokobo Younger Granite Complex is one of the several anorogenic granite suite in central Nigeria which intruded the Basement Complex. The complex is found to comprise of felsic rocks like; rhyolite, biotite-granites, biotite micro granites, hornblende biotite granites and syenites. The complex is also found to be associated with mafic rocks like gabbroic diorites and diorites which, at some portions have formed hybrid rocks. Aegirine - arfvedsonite-, rebeckite- and quartz- feldspar- granites are the porphyritic rocks that form the ring complex. The rock chemistry of twenty eight (28) representative samples was carried out on the energy dispersive x-ray fluorescence (EDXRF) for twelve (12) major and thirty seven (37) trace and REE elements. Agaitic index and alumina saturation index suggest that most of the samples are peraluminous to metaluminous. The widely used SiO_2 vs K_2O classify most of the granite samples as high K rocks while the mafic gabbroic diorites and diorites as calc-alkaline. Use of the popular Pearce et al discrimination diagrams for tectonic interpretation of granitic rocks ($(Na_2+K_2O)/CaO$ vs Zr+Nb+Ce+Y and Nb vs 1000*Ga/Al), all the samples were plotted in both diagrams in WPG, as well as in the field of A-type granites in the Y vs Nb diagram. The enrichment of high field strength (HFS) elements in the investigated granites confirms their A-type identity and exclude them from other granitic types. Spidergraph show negative Sr anomaly suggesting the feldspar fractionated nature of the granitoids where plagioclase played an important role in the evolution of the A-type magmatism. The magma that gave rise to the granitoids most likely came from the lithospheric mantle. The enrichment of Zr and Nb in the rocks indicate Nb-Sn-W mineralization. The northern parts of the Complex contains Pb>15 which confirms that they are tin-bearing or productive granitoid suites.

Keywords: A-type, Anorogenic, Granite, Saiya-Shokobo, Mineralization.

Date of Submission: 23-05-2019

Date of acceptance: 08-06-2019

I. Introduction

The Younger Granite Ring Complexes are located in the southern part of a 200 km wide zone, along the 9th meridian and extending 1250 km from Andrar Bous in northern Niger to Afu in the margin of the Benue Trough in Nigeria . The form and general pattern of the ring centres may have been controlled by pre-existing lines of weakness in the Pan African basement (Kinnaird et al, 1985) (Fig. 1). The Saiya-Shokobo Younger Granite Complexes is one of the fifty three anorogenic alkaline Younger Granite Complexes in the Nigerian Pan African Basement Complex (Macleod et al, 1971). The granite suite is located approximately forty five (45) kilometres north of Jos, the Plateau State capital. Saiya-Shokobo Complex constitute a significant window to the detailed understanding of the magmatic evolutionary trends and metallogenic characteristics of the Nigerian Younger Granites as a whole. This is because of the province. The complex is found associated with gabbroic and doleritic enclaves, peralkaline and peraluminous igneous rocks (Figure 1). Details on the field geology and mineralogy of the Saiya-Shokobo Complex have been discussed by the authors elsewhere (Aga and Haruna, 2019a in press)

Fig.1: Top = Geological Map of Nigeria Showing the Location of the Younger Granite Ring Complexes (After Obaje, 2009); Left = Map of Younger Granites Ring Complexes of Nigeria (Modified After Kinnard et` al, 1985); Centre = Geological Map of Saiya-Shokobo Younger Granite Complex

Anorogenic, A-type granites are characterized by high SiO_2 , Na_2O+K_2O , Fe/Mg, Ga/Al, Rb, Nb, Zr, Ta, Y, Cs, Ga, U, Th, REE (except Eu) and low abundances of MgO, CaO, Mg, Ba, Sr, P, Ti, Ni, Cr, Co, V (Collins et al,1982 and Whalen et al, 1987). Many models have been proposed to the origin of A-type granitoids. These models can be grouped into two broadly speaking due to the

challenge of linking the various petrological and geochemical properties of granitic rocks to the sources, processes and tectonic settings that produced them.

One popular approach was first proposed by Chappell and White (1974) and emphasizes the sources of granitic rocks as a key factor that controls their characteristics. This approach originally classified granites into two types: I-type (from igneous source rocks) and S-type (from sedimentary source rocks). Such a classification is intrinsically independent of tectonic processes. This scheme has been further developed into the I-S-A-M-H classification scheme in which "A" indicates anorogenic (Loiselle and Wones, 1979), "M" represents "mantle-derived", and "H" denotes "hybrid" types (Castro et al., 1991). Although this classification scheme is useful, the different types may overlap. For instance, S-type granite can also be classified as A-type granite, and highly felsic I-type granites generally have an A-type affinity.

Another approach is to analyze tectonic environments using trace element discrimination diagrams, such as those proposed by Pearce et al. (1984). This is the main approach adopted in this study because the fields on the discriminant diagrams reflect source regions and crystallization histories. The purpose of this paper is to provide a geochemical data on the Saiya-Shokobo A-type granite and associated mineralization, so as to infer their petrogenesis and tectonic setting.

GEOCHEMISTRY

The rock chemistry of twenty eight (28) representative samples was carried out on the energy dispersive x-ray fluorescence (EDXRF) for twelve (12) major and thirty seven (37) trace and REE elements. The sample preparation and analysis were carried out at the Geochemistry laboratory of the Nigerian Geological Survey Agency in Kaduna. The samples analyzed comprise of three (3) rhyolite samples, five (5) diorites, two (2) gabbroic diorites, one (1) granodiorite and seventeen (17) granites of varying textural compositions. The detailed geology and petrography of the samples is described elsewhere (Aga and Haruna, 2019a). The discrimination and correlation diagram are plotted to characterize each granite type and to discuss the petrogenesis and mineralization of the granites from the study area.

Major, Trace and REE Element Classification

The result of the chemical analyses are given in the tables 1, 2a and 2b below. The concentration of SiO₂ in the granites are high SiO₂ (53 - 74.6) as compared to the gabbroic diorites (50 -52.24). The inverse relationship exist with respect to the total iron, highest in a diorites (18.42) and lowest in a granite (1.45). The average values of TiO₂, Na₂O and K₂O for the gabbroic diorites are 3.58, 0.19 and 3.185 which are comparatively lower to the granites: 6.733, 0.34 and 5.2035 respectively. However, the average concentration of the gabbroic dolerites for Al₂O₃, CaO and MgO are 16.21, 5.636 and 5.05 are comparatively higher than the granites: 12.319, 0.95 and 0.14365 respectively. The granites ranges from peralkaline to peraluminous, the gabbroic dolerites are metaluminous; Agpaitic Index (AI= molecular portion of Na₂O+K₂O/Al₂O₃) and alumina saturation index (A/CNK = molecular Al₂O₃/Na₂O + K₂O + CaO) ratio < 1 peraluminous (corundum and anorthite normative; AI >1) (Fig. 4). The Na₂O-Al₂O₃-K₂O triangular diagram plot most of the samples within the granites as high-K rocks, with the exception of the granodiorite that belong to the shoshonite series. Meanwhile, the mafic gabbroic diorite and diorite samples belong to the calc-alkaline series (Fig. 6).

Tectonic setting and Petrogenesis

The geochemical nature of the studied A-type granites are critically tested using the standard common schemes as well as the adopted three-tiered geochemical classification scheme of granites rocks. As the extreme Fe*O enrichment relative to MgO (high FeO*/MgO) is a typical signature of A-type granitoids, all the present granite samples are grouped as A-type granite on the Fe* {FeO*/(FeO+MgO)} vs SiO₂, Na₂O+K₂O-CaO vs SiO₂ and Zr vs 1000*Ga/Al diagrams (Figs. 7, 8 and 9).

				-				-	-	0				-
Sample ID	Location	Petrology	SiO ₂	CaO	MgO	SO3	K ₂ O	Na ₂ O	TiO ₂	MnO	P ₂ O ₅	Fe ₂ O ₃	Al ₂ O ₃	H_2O^+
AT1	Saiya - Shokobo	Gabbroic Diorite	50	8	4.5	0.28	0.87	0.28	2.1	0.2	0	4.9	19	8.08
AT8	Saiya - Shokobo	Granite	73.81	0.34	0.003	0	5.5	0.88	0.36	0.064	0	3.89	12.63	1.6
AT10	Saiya - Shokobo	Granite	72.96	0.82	0.04	0	5.5	1.01	0.43	0.16	0	2.85	12.67	2.08
AT11	Saiya - Shokobo	Gabbroic Diorite	52.24	3.32	5.6	0	1.83	0.6	5.06	0.25	0	14.4	13.42	3.14
AT12	Saiya - Shokobo	Diorite	58.3	3.46	6.2	0	2	0.43	3.14	0.21	0	11.72	10.46	2
AT13	Saiya - Shokobo	Granodiorite	59.9	7.3	0.43	0.36	4.11	0.73	1.71	0.31	0.004	9.8	10.04	3.86
AT16	Saiya - Shokobo	Granite	72.06	0.72	0.03	0	7	1.43	0.97	0.25	0.02	4.46	12.21	1.1
AT21	Saiya - Shokobo	Granite	74.43	0.02	0	0.63	4.01	0.89	0.21	0.062	0	2.51	13.86	1.84
AT25	Saiya - Shokobo	Granite	73.2	2.07	0.63	0.006	1.4	1.02	1.93	0.19	0	2.81	13.06	1.01
AT27	Saiya - Shokobo	Rhyolite	74.2	1.73	0.18	0.43	5.2	0.67	0.22	0.032	0	2.34	13.81	1.64
AT28	Saiya - Shokobo	Granite	72.46	1	0.34	0.032	7.4	2.54	0.23	0.06	0	2.34	12.21	1.2
AT38	Saiya - Shokobo	Granite	73.89	1.4	0.08	0.06	5.1	0.69	1.09	0.24	0	3.08	13.01	1.4
AT32	Saiya - Shokobo	Granite	68	1.12	0.008	0.068	10.3	0.14	1.48	0.092	0	2.94	11.48	2.94
AT33	Saiya - Shokobo	Diorite	53	6.5	2.23	0	0.4	1.86	3.16	0.36	0	18.42	1.06	2.06
AT35	Saiya - Shokobo	Rhyolite	70	0	0	0	9.18	1.02	1.11	0.039	0	4.28	10.08	3.42
AT45	Saiya - Shokobo	Diorite	57.1	2.33	8.84	0.13	1.08	0.33	3.24	0.27	0	8.24	12.34	5.6
AT49	Saiya - Shokobo	Diorite	58	6.1	3.81	0.7	1.7	0.16	2.81	0.22	0.04	10.46	10.6	4.08
AT53	Saiya - Shokobo	Rhyolite	73.74	1.68	0.2	0.23	5.14	0.43	0.506	0.09	0	0.96	13.66	1.72
AT54	Saiya - Shokobo	Granite	74.02	0.29	0.002	0.23	4.18	0.07	0.62	0.13	0.08	4.59	13	1.44
AT59	Saiya - Shokobo	Granite	74.6	1.03	0.04	0.02	5.12	0.93	0.69	0.12	0.13	2.64	13.46	1.16
AT61	Saiya - Shokobo	Diorite	58.6	9.7	0.82	0.56	1.34	0.63	3.52	0.25	0.03	10.06	10.71	2.24
AT66	Saiya - Shokobo	Granite	73.02	0.96	0.13	0.42	8.14	2.06	0.15	0.053	0	0.42	12.76	1.4
AT67	Saiya - Shokobo	Granite	72.8	1.46	0.1	0.06	3.4	0.43	2.18	0.075	0.01	4.1	13.4	1.51
AT70	Saiya - Shokobo	Granite	75.6	0.98	0.28	0.62	4.5	1.04	0.27	0.066	0	1.45	13.02	1.06
AT75	Saiya - Shokobo	Granite	73.9	0.38	0.03	0.43	4.02	0.76	0.55	0.23	0	3.64	13.86	2.08
AT78	Saiya - Shokobo	Granite	73.3	0.76	0.02	0.4	6.02	0.78	0.3	0.061	0	0.78	13.98	2.71
AT83	Saiya - Shokobo	Granite	72.96	1.9	0.73	0.06	3.69	0.67	0.98	0.032	0	2.02	13.06	2.86
AT3	Saiva - Shokobo	Granite	73	0.98	0.03	0.39	8.03	0.71	0.3	0.042	0	2.42	12.98	1.43

 Table 1: Major Element Concentration of Saiya-Shokobo Younger Granite Complex

Sample 10	Luciu	Petadagy	Ŧ	Cr	G	Sr.	æ	ь	2	Ce	n	T	6	4	T	ł	-	Ħ	-	R.	ш	6
# 1	ملطط مرفي	- Galdenic Dimite	39	24	30	33	570	38	-0	23	39	401	39	419 1	ផ	7	401	401	B	IJ	481	1.10L
-	Saipe - Shahala	Ganile	39	4	219	36	110	9 7	Bú	B	39		18	2	34	24	401	481	12	174	481	N/S
an)	Saiya - Shahala	Gamile		-	29	38	3120	115	-83	10	29	40 1	B	10	36	-4191	Ldi	481	54	58	LR	IJB
A 11	Saiya - Shahala	• Galdennic Dimite	2	Ē	ŝ	29	14	Ľ,	9	N.H.	党	419 1	2	Ē	29	419 1	481	Ē	39	BJBL	419 1	5
A 112	Saiya - Shahala	• Dimite	KS.	46	ŝ	96		đ	39	N.H.	ED.	17.21	-	Ē	32	61		Ē	31	BJBL	419 1	39
A 113	Saiya - Shuhala	Ganalinite	- 98	46	30	2199	-63	38		9	- 20	-4191	24	-	22	45	12	40 1	17	13	1	-1 101
.	Saiya - Shahala	Ganile	416	۹	53	IJ	756	481	B	m	-	40 1	31	4	17	56	à	481	13	110	4 31	
A 21	Saiya - Shahala	• Gamile	40 1	۹	29	IJ		19	73	151	39	23	39	4	7	11	Ľ	481	116	570	NJM.	8.3691
#25	Saipe - Statistic	Ganile	Ð	40 1	20	1570	11	30	29	ផ	-69	4 01	11	4.0 1	16	2	62	40 1	26	70	IJE	<101
#2 7	Saipe - Staated	- Hyslic	401	4 01	20	5	-	11	59	29	50	401	3	6	5	17	41 11	401	167	N.MIL	1.102	R.JOL
#21	Saiya - Shahala	Gamile	IJ	-	10	30	39	401	Ľ	67		116	19	64	5	22	LE	40 1	91	BJBL	410 1	IJE
# 32	Saige - Sheleda	Ganile	12	n	39	90	X .	58	10	RJNN.	40 1	410 1	5	419 1	21	40 1	3	22	37	329	-1 101	IJB
# 32	Saiya - Shahala	e Gamile	40 1	40 1	-68	31D	33	38	10	R JHL	37	152	29	7		49	41	-	ក	R JOH	IJE	R JOH
# 33	Saige - Sheleda	• Dimite	Ð	59	.30	78	20	.30	570	70	401	29	28	.30	B	410 1	- 10 1	11	57	BØ	R.HML	419 1
13 5	Saige - Sheleda	• Hyslic	40 1	<101	ű	NEM.	33	.301	15	ជ	20	419 1	33	22	B	21	<10 1	- 101	13	258	2.001	419 1
Ø 6	Saiya - Shahala	• Dimite		D	29	33	B	10	-	NJNL.	1121	401	3	410 1		52	40 1	40 1	B	17	116	419 1
	Saiya - Shahala	• Dimite	4	16	39	13		-	37	D.H.	41 01	25	-4101	⊲∎1	43	410 1	12	-	36	BJOL	⊲∎1	410 1
A 53	Saiya - Shahala	• Nyalie	2	-	38	39	- 24	-	B	2		⊲∎1		5	31	2	-	31	21	BJOL	NJ9L	410 1
854	Saiya - Shuhaha	• Gamile	39	11	370	B.JOL	90	-	23	30	40	⊲∎1	21	⊲∎1	73	<101	- 10 1	401		758	5	R.JOL
A 59	Saiya - Shahala	Ganile	5	87	278	39	23	10	n	29	-1101	4 101	13	B	26	29	121	481	30	- 10	4 101	R.SOL
A 61	Saiya - Shahala	• Dimite	39	•	39	29	1580	780	23	D.HEL	JJSI	419 1	400 1	⊲∎1	R JOL	4.8 1	- 10 1	40 1	22	958	419 1	R.JOL
	Saiya - Shahala	• Gamile	41 01	-	29	163	190	8	e	9	50	- 10 1	58	5	B	2	Ľ	40 1	39	B.JOL	419 1	BJOH
86 7	Saiya - Shahala	• Gamile		58	20	590		-	8	55	30	40 1	75	5	B	25	и	IM	e	28	419 1	-1.01
ATR	Saiya - Shahah	Ganite	-	-	270	60	102	30	23	Q	30	- 101	6		23	29	12	-	21	20	NJR7	IJE
ATS	Saja - Statuta	Ganite	38		20	N MIL	28	6	2 7	29	79	4001	24	419 1	27	40 1	4001	-	10	10	2.001	4101
An	Saiya - Shahala	Ganile		12	19	50	4	90	29	29		11	B	64	16	4001	M	40 1	22	.39	4001	IJB
A 33	Saja - Statuta	Ganite	212	636	29	37	173	50	10	18	30	4001	м	4	6	15	4001	-	B2	R JOH	RJML.	4001
Æ	Saiya - Shahala	• Ganite	48	16	30	14	233	210	33	10	30	478	36	15	59		-4101	410 1	337	10	-4101	I III

Table 2a: Trace and REE Concentration of Saiya-Shokobo Younger Granite Complex

Table 2a: Trace and REE Concentration of Saiya-Shokobo Younger Granite Complex

-																		
Sample ID	Location Petrology	Cd	Ru	Eu	Re	Hg	Ag	Ta	W	Hf	Yb	In	Se	U	Th	Sb	Sn	Ge
AT1	Saiya - Shokobo Gabbroic Diorite	0.002	2.8	65	6.001	30	<0.001	<0.001	<0.001	11.24	2	<0.001	6.4	< 0.001	< 0.001	7.7	15.21	3.1
AT8	Saiya - Shokobo Granite	0.001	30	170	10	1.01	2.77	51	1.08	20	10	1.9	0.005	0.001	< 0.001	<0.001	<0.001	0.7
AT10	Saiya - Shokobo Granite	0.002	<0.001	20	5.3	<0.001	<0.001	71	12	14.04	5.3	2.6	0.004	0.001	< 0.001	<0.001	0.047	4.5
AT11	Saiya - Shokobo Gabbroic Diorite	< 0.001	8.6	38	< 0.001	2	1.4142	<0.001	<0.001	11	<0.001	8	< 0.001	0.05	0.002	0.2	7.12	<0.001
AT12	Saiya - Shokobo Diorite	< 0.001	35	33	0.54	<0.001	0.78	<0.001	<0.001	2.01	0.7		0.02	<0.001	< 0.001	0.2	51.07	15
AT13	Saiya - Shokobo Granodiorite	0.02	< 0.001	33	< 0.001	6	<0.001	81	4.34	51	0.084	1.5	0.054	< 0.001	< 0.001	< 0.001	9.3	7
AT16	Saiya - Shokobo Granite	< 0.001	31	23	< 0.001	0.54	2.4	40.24	12.3	9.5	< 0.001	4.1	< 0.001	0.21	0.002	< 0.001	10.151	<0.001
AT21	Saiya - Shokobo Granite	0.002	0.36	120	4.8	<0.001	2.6	72	0.98	8.8	0.001	2	6.4	< 0.001	< 0.001	0.45	5.31	0.02
AT25	Saiya - Shokobo Granite	0.001	3	27.78	< 0.001	<0.001	1.7	40.4	2.86	12	0.001	1.3	7.3	0.003	0.001	1.6	7.54	1.1
AT27	Saiya - Shokobo Rhyolite	< 0.001	32	84	2	<0.001	<0.001	0.21	0.042	2.744	< 0.001	2.2	37	0.102	0.003	4.5	<0.001	<0.001
AT28	Saiya - Shokobo Granite	0.001	27	55	<0.001	0.642	<0.001	<0.001	<0.001	12	< 0.001	3.4	0.005	0.001	0.002	<0.001	4.61	7
AT38	Saiya - Shokobo Granite	0.002	1.33	22	< 0.001	4.32	<0.001	60	4.24	24	2.022	3.7	<0.001	< 0.001	< 0.001	3.8	6.32	<0.001
AT32	Saiya - Shokobo Granite	< 0.001	< 0.001	110	0.055	4	1.9	< 0.001	< 0.001	20	< 0.001	5	< 0.001	0.011	0.2	0.1	8.34	<0.001
AT33	Saiya - Shokobo Diorite	< 0.001	< 0.001	390	< 0.001	28	<0.001	21	2.06	40	20	0.7	< 0.001	< 0.001	< 0.001	0.4	10.05	0.3
AT35	Saiya - Shokobo Rhyolite	0.002	11	<0.001	< 0.001	<0.001	2.4	70	14	17	< 0.001	6.1	< 0.001	< 0.001	< 0.001	3.6	10.53	0.05
AT45	Saiya - Shokobo Diorite	0.001	< 0.001	370	1.554	20	<0.001	12.08	2.34	8	0.006	1.9	< 0.001	< 0.001	< 0.001	3	3.54	0.002
AT49	Saiya - Shokobo Diorite	< 0.001	1.23	340	0.24	2	0.54	<0.001	<0.001	24	0.122	0.455	<0.001	0.003	0.008	3.3	15.32	<0.001
AT53	Saiya - Shokobo Rhyolite	0.055	33	140	< 0.001	0.001	<0.001	< 0.001	< 0.001	<0.001	0.044	2.5	0.002	< 0.001	< 0.001	2.9	3.32	<0.001
AT54	Saiya - Shokobo Granite	< 0.001	<0.001	240	0.004	<0.001	7.5	67	2.46	<0.001	< 0.001	4	<0.001	5	2.011	10	0.881	<0.001
AT59	Saiya - Shokobo Granite	0.003	<0.001	220	< 0.001	< 0.001	<0.001	64	2.26	29	< 0.001	4.7	<0.001	< 0.001	< 0.001	0.022	6.122	<0.001
AT61	Saiya - Shokobo Diorite	0.008	1.32	36	10	20	<0.001	152	7.73	2.87	0.003	0.5	17.4	< 0.001	< 0.001	3.6	5.11	<0.001
AT66	Saiya - Shokobo Granite	0.002	27	20	< 0.001	<0.001	<0.001	< 0.001	< 0.001	20	0.004	4.4	< 0.001	< 0.001	< 0.001	< 0.001	10.551	<0.001
AT67	Saiya - Shokobo Granite	0.0005	0.31	120	10	0.8	0.9	163	6.4	39	< 0.001	3.3	37	0.0102	0.0006	2.4	3.521	2
AT70	Saiya - Shokobo Granite	< 0.001	33	15	33	<0.001	4	21	12	20	0.003	2.4	0.0004	<0.001	< 0.001	<0.001	12.411	<0.001
AT75	Saiya - Shokobo Granite	0.002	<0.001	320	20	<0.001	0.014	28	0.96	47	< 0.001	2	7.3	0.0003	0.007	< 0.001	0.53	<0.001
AT78	Saiya - Shokobo Granite	0.006	<0.001	11	1	<0.001	<0.001	46	2.22	20	< 0.001	2.5	0.005	0.001	0.002	< 0.001	6.31	< 0.001
AT83	Saiya - Shokobo Granite	< 0.001	<0.001	15	30	<0.001	<0.001	< 0.001	20.06	0.0003	< 0.001	8	0.006	0.31	< 0.001	12.3	0.021	
AT3	Saiya - Shokobo Granite	< 0.001	7.1	8.7	7	< 0.001	2	70	11	39	3	4.3	8	0.006	0.84	0.004	10.3	<0.001

Fig. 4: ANK vs A/CNK diagram for rocks

Fig. 5: Molar Na₂O-Al₂O₃-K₂O triangular diagram

Fig. 6: SiO2 vs K₂O diagram with Field

Fig. 7. Chemical Classification using FeO*/(FeO+MgO) vs SiO₂

Fig. 8: Chemical Classification using Na₂O+K₂O-CaO vs SiO₂ Fig. 9: Zr vs 1000*Ga/Al diagram

Fig. 10: Tectonic discrimination diagram Nb vs Y Fig. 11: Hf-Rb/30-3Ta Triangular diagram

The projection of the field samples on Frost et al modified alkali-lime index vs SiO_2 also plot the rocks within the A-type field (Fig. 8). Use of the popular Pearce et al trace element discrimination diagrams (Fig. 9 and Fig. 10), for tectonic interpretation of granites rocks (Y vs Nb and Y+Nb vs Rb), all samples were plotted in both diagrams in WPG, as well in the field of A-type granites in the Y vs Nb diagram, delineated by Stern and Gottfried. The Hf-Rb/30-3Ta triangular diagram also plot the rocks as within plates (Fig. 11). These diorites and gabbroic diorites are high in MgO, FeO*, CaO, Sr while the granitoids are high SiO₂, Na₂O, K₂O, Fe/Mg, Y and show both the LREE and HREE (Eby and Kochhar, 1990).

LEGEND

Gabbroic Diorite Granite Granodiorite

Diorite

Rhyolite

Spidergraphs show negative Sr, Th, Nb and Yb anomalies, indicating either the retention of plagioclase and accessory minerals in the source during partial melting or their separation during fractionation (Fig. 12). It also supported by their high Zr, Y and low Ti contents, characteristic of acid magmas generated within-plate tectonic environment. Enrichment in the high field strength (HFS) elements is a characteristic feature of alkaline A-type granites in general. The high enrichment of these elements in the investigated granites confirm their A-type identity and exclude them from other granite type on the Zr vs 1000Ga/Al diagram (Fig. 9). All of the REE patterns have strong negative Eu anomalies and exhibit concave downward shapes of obvious positive slopes due to heavy REE enrichment relative to middle and light REE. The heavy REE are more greatly depleted suggesting absence of garnet in the source, since heavy REE are highly com-patible in garnet (Wilson, 1989). This further indicate that, if mantle participation is assumed in the source material, a shallow mantle is preferred rather than deep one where spinal stability is favored rather than garnet (Ragland, 1989). The enrichment of Zr and Nb in the rocks indicate Nb-Sn-W mineralization. The northern parts of the Complex contains Pb>15 which confirms that they are tin-bearing or productive granitoid suites.

Fig. 12. Spidergraph - Primitive Mantle

II. Conclusion

From the field relations and petrographic studies (Aga and Haruna, 2019a) and the geochemistry of the A-type Saiya-Shokobo Younger Granite Complex, the following petrogenetic model is likely. The mafic magmasmost probably derived from the upper part of the lithosphericmantle were emplaced in a deep crustal magma chamber. Duringtheir ascent, these magmas may have undergone high fractionation and possibly minor contamination by crustal material. The secondstage was characterized by fractionation of the mafic magmasin the magma chamber to produce the more felsic members of thesuite with crustal assimilationnot being significant at thisstage.

Acknowledgement

T. Aga acknowledge the support of Topgems Prolific Nigeria Limited, Jos, Nigeria for the geological investigation of the Sara-Fier Younger Granite Complex. Messrs Yaharo, E.D. and Bulus, D. of the Nigerian Geological Survey Agency, Kaduna are appreciated for their support and encouragement during chemical analyses. Dr. E. Allu is thanked for making out time during her post-doctoral research work at Central University in South Africa to download and send relevant materials that improved the initial manuscript.

References

- Castro, A., Moreno-Ventas, I. and de la Rosa, J.D. (1991): H-type (Hybrid) Granitoids: A proposed Revision of the Granite-type Classification and Nomenclature. Earth-Science Reviews 31, 237-253.
- [2]. Collins, W. J., Beams, S.D., White, A.J.R.and Chappell, B.W. (1982): Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology. Vol. 80. Pp. 189-200.
- [3]. Eby, G.N. and Kochhar, N. (1990): Geochemistry and Petrogenesis of the Malani Igneous Suite, North Peninsular India. Journal of Geological Society of India, Vol. 36. Pp. 109-130.

[5]. Kinnaird, J.A. (1985): Hydrothermal Alteration and Mineralization of the Alkaline Anorogenic Ring Complex of Nigeria. Journal of African Earth Science. Vol. 3. Pp. 229 – 251.

^{[4].} Frost, B. R., Barnes, C. G., Colins, W.J., Arculus, R.J., Ellis, D.J. and Frost C.D. (2001): A geochemical classification for granitic rocks. Journal of Petrology. Vol. 42. Pp. 2033-2048.

- [6]. Loiselle, M.C. and Wones, D.R. (1979): Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs. Vol. 11. P468.
- [7]. Macleod, W.N; Turner, D.C and Wright, E.P. (1971). The Geology of Jos Plateau. Geol.Surv.Nigeria Bull. No.32.Vol.2. 160pp.
- [8]. McDonough, W.F. and Sun, S.S. (1995). The Composition of the Earth. Chemical Geology. Vol 120. Pp 223-253.
- [9]. Maniar, P.D and Piccoli, P.M (1989). Tectonic Discrimination of Granitoids. Geological Society, American Bulletin. No 101. Pp 635-643.
- [10]. Middlemost, E.A. (1985): Magmas and Magmatic Rocks. An Introduction to Igneous Petrology. Longman Group, UK. Pp. 73-87.
- [11]. Pearce, J.A. and Norry, M.J. (1979): Petrogenetic Implications of Ti, Z, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology. Vol. 69. Pp. 33-47.
- [12]. Pearce, J.A; Harries, N.G and Tindale, A.G (1984):Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology.Vol.25.Pp 956-983.
- [13]. Ragland P.C. (1989): Basic Analytical Petrology. Oxford University Press. New York.
- [14]. Shand, S.J. (1947): Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits. J. Wiley & Sons, New York.
- [15]. Stern R.J and Gottfried D. (1989): Discussion of the paper "Late Pan- African Magmatism and Crustal Development in Northeastern Egypt". Geological Journal. Vol. 24. Pp. 371–374.
- [16]. Whalen, J. B., Currie, K. L. and Chappell, B. W. (1987): A type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology. Vol. 96. Pp. 407-419.
- [17]. Wilson, M. (1989): Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman Ltd.

Aga, T.. " The Geochemical Contraints in The Origin of The Saiya-Shokobo Younger Granite Complex, Central Nigeria." IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) 7.3 (2019): 01-07.

DOI: 10.9790/0990-0703010107